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ABSTRACT 

Heat and air pollution persist as major public health hazards in urban environments. Yet there are 

gaps in the quality of information about the hazards as conditions tend to be informed by limited 

stationary sensors providing information at large geographic scales. Here we present the results of 

a study that took place in Phoenix, Arizona, to assess the efficacy of low-cost mobile sensors on 

public transportation vehicles to monitor fine-scale on-road heat and PM10 concentrations. The 

goal of the study is to uncover the spatial and temporal variations of excessive heat and air 

pollution experienced by transit commuters, bicyclists, and pedestrians. The results show that the 

sensors on the buses complement the readings from stationary sensors and low-cost mobile sensors 

are effective for gaining fine-grained heat and air quality readings at different locations, thereby 

creating new insights into pockets of heat and air pollution that should be targeted for intervention.  
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1. INTRODUCTION 

Heat and air pollution persist in urban environments as major public health hazards, and in many 

places are projected to worsen with population growth, climate change, or both. Research into the 

drivers of urban heat, and how people experience heat is increasing rapidly (Brandsma and 

Wolters, 2012; Karner et al., 2015; Nazarian et al., 2021). In the US, heat has been the top driver 

of weather-related fatalities for decades (National Weather Service, 2020). In the Southwest US, 

heat is a major public health hazard; there were 339 heat-associated deaths in Maricopa County, 

Arizona (Phoenix metro region) in 2021, 123 deaths in Clark County, Nevada (Las Vegas metro 

region) in 2017, and the State of California had on average 390 heat deaths per year between 2010 

and 2019 (Maricopa County Public Health, 2021; Lupiani, 2021; Phillips et al., 2021). In Maricopa 

County, there are approximately 12 hospitalizations (morbidity) for every heat death (Eisenman et 

al., 2016). Heat and air pollution represent a concurrent and compounding hazard of major concern. 

Heat can alter atmospheric boundary layer conditions and air circulation in urban environments 

affecting air quality (Ichinose et al., 1999; Fan and Sailor, 2005; Makar et al., 2006; Lin et al., 

2008; Chen et al., 2009). As people experience concurrent heat and air pollution, there are 

compounding negative physiological effects (Anenberg et al., 2020; Rahman et al., 2022). Taken 

together, there is growing concern about how climate change can impact public health at the nexus 

of heat and air quality. 

 Currently, air quality and heat are monitored by stationary sensors that are often dispersed 

across relatively large geographic areas. Although well-suited for providing a general 

understanding of air pollution and heat conditions across a region, this approach is somewhat 

limited in its ability to provide insights at the (hyper) localized scale at which people are exposed 

to and impacted by these hazards. In other words, the impacts of air pollution and extreme heat are 

experienced/felt at the “human scale,” not the larger scales currently captured by existing 

monitoring networks (Steinle et al., 2013). There is a growing body of knowledge showing that 

both urban temperature and air quality can vary widely across space and time due to complex 

geographic, economic, ecological, and meteorological factors (Emmanuel and Fernando, 2007; 

Davis et al., 2010; Middel et al., 2014; Whiteman et al., 2014; Myint et al., 2015; Li et al., 2016; 

Mitchell et al., 2018). For instance, significant differences in temperature have been observed 

across and within neighborhoods in different urban areas (e.g., Kuras et al., 2015; Kuras et al., 

2017; Middel & Krayenhoff, 2019). What is more, differences in meso- and microscale 
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environmental conditions often converge with socio-economic conditions to disproportionately 

impact marginalized, under-represented, and underserved communities (e.g., Hondula et al., 2015; 

Karner et al., 2015). The spatial heterogeneity of environmental conditions (i.e., exposure to 

extreme heat and air pollution) and their potential impacts do not appear to be fully captured by 

the regional-scale monitoring and/or remote sensing approaches currently in practice. Therefore, 

novel approaches for understanding the circumstances of exposure to extreme heat and air 

pollution at a more refined scale appear warranted.  

Many techniques – such as proximity models, interpolation models, land-use regression 

(LUR) models, dispersion models, and hybrid models – have been developed over time to quantify 

fine-scale spatial and temporal patterns of urban air pollution, meteorological conditions, and their 

source drivers (Jerrett et al., 2005; Shi et al., 2018; Viggiano et al., 2019). These methods 

characterize exposure levels at various scales and relate spatial patterns to major source sectors 

using a variety of modeling tools and data sources. They can also be integrated with other data 

sources, such as remote sensing data from satellite photos or geographical information system 

(GIS) data for validation and to provide new insights (Wu et al., 2018). Geostatistical interpolation 

models are most widely used to estimate spatially-explicit pollutant concentrations (e.g., Viggiano 

et al., 2019), while LUR models relate air pollution and weather conditions to various built 

environment attributes (Jerrett et al., 2005). Since both models require observations from 

monitoring sites, their exposure estimates are based on real-world data. Additionally, by 

considering local land use and traffic patterns at a specific site, LUR models offer an empirical 

framework for pollution and heat mapping. However, certain disadvantages are associated with 

using these models. Depending on the scale of the analysis and the study context, the models may 

require a dense network of sampling sites (Jerrett et al., 2005; Miller et al., 2020). Given the sparse 

network of government monitoring stations, accuracy of the estimations from interpolation and 

LUR models may be reduced, with potential difficulties such as over-smoothing the underlying 

patterns of microscale pollution or temperature variability, inaccuracies in estimates, and a lack of 

transferability to other geographic areas. To overcome these difficulties, primary data collection is 

often necessary but is challenging due to the high costs of operating and installing fixed monitoring 

sites. 

 Advancements in environmental and meteorological modeling offer one approach for 

gaining finer-scale insights into exposure to heat and air pollution. However, modeling and 
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interpolation of environmental conditions can be subject to uncertainty, variability, and limitations 

in their applicability to different contexts due to the multitude of compounding urban conditions 

and dynamics that drive microclimates, as well as sensitivities to methodological assumptions and 

inputs (Oke et al., 2017; Hondula et al., 2018; Krayenhoff et al., 2021). Similarly, exposure models 

often assume that the entirety of an individual’s exposure occurs at their home address or 

neighborhood, which is often inaccurate (Glass et al., 2015; Karner et al., 2015). This approach 

may be problematic as it does not fully account for the complexity of people’s interactions with 

their environments across space and time and their physiological reactions to exposure and 

reprieve (Baxter et al., 2013). Towards generating critical insights into microclimate exposure, 

new techniques are needed to complement and supplement modeling efforts and regional-scale 

observational networks. 

The growing ubiquity of accurate and low-cost temperature and air quality sensors presents 

an opportunity for novel methods to characterize microclimates and human exposure (Snyder et 

al., 2013; Kumar et al., 2015; Wang et al., 2021; Middel et al., 2022). For instance, there is an 

emerging body of work using sensors to measure the environmental conditions of individual 

persons as they conduct their daily activities (e.g., Kuras et al., 2015; Wang et al., 2021). However, 

despite exhibiting promise, these approaches are still faced with various challenges and limitations, 

namely scalability issues (i.e., recruiting and retaining participants across diverse communities and 

relatively long time periods), sensor limitations (McKercher & Vanos, 2018), and privacy 

concerns. Thus, we place an emphasis on mobile sensing, where vehicles are outfitted with sensors 

to capture environmental information across space and time at higher fidelity than stationary 

sensors (Hankey and Marshall, 2015; Mitchell et al., 2018; Miller et al., 2020). Mobile sensing is 

in a relatively nascent stage and only a few studies have assessed its accuracy and feasibility 

(Kumar et al., 2015; Xie et al., 2017; Li and Lau, 2018; Kaivonen and Ngai, 2020; Mallia et al., 

2020; Van den Bossche et al., 2015; McKercher & Vanos, 2018).  

Since weather and air quality conditions can change dramatically over small distances 

and/or in a short amount of time, mobile sensors mounted to vehicles allow for data collection in 

a variety of locations without incurring additional costs for sensor installation on city infrastructure 

(Kaivonen and Ngai, 2020). They also improve coverage and enable semi-continuous 

characterization of the fine-scale heterogeneity of temperature and emissions in the sensing area – 

outcomes that are difficult to achieve with existing observational and modeling approaches. As a 
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result, hotspot detection, exposure monitoring, and high-resolution air quality and temperature 

mapping are possible with this technology (Elen et al., 2012). In deciding which vehicles to outfit 

with mobile sensors, urban public transit systems represent a constellation of preferable factors. 

The systems are public and therefore more easily accessible for placing sensors, have operations 

that cover the entire city, and are often serving population subgroups that experience higher 

vulnerability to heat and air pollution (Gil-Castiñeira et al., 2008; Jamil et al., 2015; Marjovi et al., 

2015; Alsina-Pagès et al., 2016; Barri et al., 2021). Outfitting urban bus networks with 

environmental sensors represents a potentially significant advancement in our ability to understand 

and address microclimate variability and human exposure to extreme heat and air pollution – 

particularly in communities that are disproportionately impacted by these hazards. 

Towards this end, we present approaches and results from a research effort in Phoenix, 

Arizona to test the efficacy of low-cost mobile air temperature and air pollution (specifically PM10) 

sensors on public transit buses. In particular, we investigate the feasibility of creating a mobile 

sensing platform with public transit vehicles. We also explore the potential data and insights that 

this approach can provide with respect to identifying localized “hot spots” for extreme heat and 

air pollution, as well as informing the ability of decision-makers and community members to 

mitigate potential impacts from these hazards. To the best of our knowledge, this is the first study 

to use this approach to simultaneously examine temperature and air quality at the sub-

neighborhood scale. We also help advance synergies between environmental sensing, vulnerability 

and risk analysis, transit and urban planning, and environmental equity/justice. Note, throughout 

the article we refer to collecting data and conducting analysis at the “human scale.” We 

acknowledge that measurements from buses affixed with sensors are likely to be a few meters 

away from the conditions experienced by a person on the sidewalk or at the bus stop. Nonetheless, 

we feel that this phrasing helps convey the scope of our analysis and the actions/decisions it aims 

to inform. 

2. METHODOLOGY 

Low-cost temperature and air quality sensors were installed on public transportation vehicles to 

investigate the possibilities for increasing fine-scale monitoring of urban environments at the 

human scale. The study took place in the City of Phoenix, Arizona, a location where extreme 

temperatures, air pollution, and active transport come together for a large (~1.7 million people) 

and growing population. A specific bus route was selected that services numerous communities, 
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including disadvantaged communities. Our study approach investigates the ability of mobile, 

lower-cost sensors to identify pockets of elevated heat and air pollution to aid targeted mitigation 

efforts. In the following subsections, we introduce the study area and discuss the rationale for 

selecting the bus route on which the experiment is conducted. We also explain the design of the 

experiment, the instruments used, and the data collection and analysis procedures. 

2.1. Study area and selected route 

The Phoenix metro region is one of the nation's largest and fastest-growing urban areas in terms 

of population and land area (US Census, 2020; Levitt and Eng, 2021). The metropolitan area, 

which is in a subtropical desert, is known for its extreme climate with low precipitation and high 

temperatures. During the summer, temperatures can reach over 110ºF (43ºC). In addition, the 

American Lung Association, which tracks citizen exposure to unhealthy pollutants, ranks Phoenix 

among the most polluted metro regions for its air quality (American Lung Association, 2022). 

Ozone, short-term particle pollution, and year-round particle pollution are all major concerns in 

the region. Extreme temperatures and poor air quality in the metro area pose major health concerns 

to residents. 

The Maryvale Circulator was chosen for this study specifically because it serves a 

neighborhood that is home to one of the metropolitan area's most vulnerable populations (Chow et 

al., 2012). The Maryvale neighborhood is an urban village in the City of Phoenix with a population 

of over 200,000 people. More than a third of Maryvale's population is made up of communities of 

color. The area's median household income is approximately 15% lower than the state median. 

Furthermore, one-quarter of the population is reportedly living below the federal poverty level, 

which is two times higher than the state average (ADHS, 2021). Therefore, the study findings are 

intended to inform planning processes aimed at improving the well-being of residents in 

neighborhoods with high rates of vulnerable populations. 
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Figure 1: Maryvale urban village of Phoenix, AZ and the Maryvale Circulator bus route (Moovit, 2022) 

The Mary Circulator route loops through the neighborhood, connecting passengers to 

schools, businesses, and other points of interest. Within an area of 16 square miles (41 km2), it 

takes about 2 hours to complete a 20-mile route including 28 stops (Valley Metro, 2022) – see 

Figure 1. Bus headway is 30 minutes from 6 am to 8 pm, seven days a week. It also starts and ends 

at a transit center where passengers can connect to a variety of bus routes to travel to Downtown 

Phoenix and other destinations. As a result, unlike many other bus routes that traverse the entire 

metropolitan area and only pass through a single community on rare occasions, the Mary Circulator 

allows for more sampling at the local/village level. Given the vulnerability and environmental 

justice concerns of the community, the Maryvale Circulator provides an ideal route for sampling. 

2.2. Instruments and vehicle setups 

This study's data was primarily collected using three instruments to measure temperature, measure 

air pollution (specifically PM10), and GPS location. The instruments, their primary measurements, 

and their sample rates are summarized in Table 1. 

 



8 

 

Table 1. Instruments used in this study 

Instrument Measurement Accuracy 
Response 

time 
Sample rate 

Kestrel DROP D2 Temperature 

& Humidity Data Logger 
Temperature (°𝐶) ±0.2 °𝐶 5 sec 1 min 

Aeroqual Series 500 - Portable 

Air Quality Monitor 
PM10 

±0.002 𝑚𝑔/𝑚3 

+15 % 𝑜𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 
5 sec 1 min 

Tracki Real-Time GPS Tracker Coordinates 15 meters (~50 feet) — 1 min 

A portable air temperature logger was used to collect temperature data (Kestrel DROP D2 

Wireless Temperature & Humidity Data Logger). These sensors record temperature with an 

accuracy of ±0.5ºC at 0.1ºC resolution and span the range of -10ºC to 55ºC (Kestrel, 2016). 

Throughout the study period, the Kestrel sensor was used to record the mean daily ambient 

temperature (°C), relative humidity (percent), dew point (°C), and heat stress index (°C).  

 

Figure 2. Vehicle setup with the three sensors (Kestrel, Aeroqual, GPS) on the top, front of the bus: the 

Aeroqual is located on the surface, adjacent to the GPS whereas the Kestrel sensor was hung from a 24-

inch-long antenna to minimize the potential for radiant heat from the vehicle.  

An Aeroqual Series 500 Portable Air Quality Monitor and an attached PM sampling head 

were used to measure PM10 concentrations. These hand-held sensors are widely used in the field 

for a variety of scientific applications (e.g., see reviews by McKercher et al., 2017 and Snyder et 

al., 2013) and can detect 30 different pollutants when combined with modular sampling heads for 
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different pollutant types. A rechargeable lithium battery powers the sensors, which can last up to 

20 hours with a PM head. In this study, the day-long battery life enabled data collection along the 

chosen route, which runs from 6 a.m. to 8 p.m. Finally, a Tracki Real-Time GPS Tracker was used 

to collect real-time GPS coordinates of the buses on which the sensors are mounted. The collected 

location coordinates were linked with air temperature and PM10 measurements based on their 

timestamps. The three instruments (Kestrel, Aeroqual, GPS) were then strategically mounted to 

the top of the front part of the vehicle (above the driver) -- see Figure 2. This location was chosen 

because it was as far away from the vehicle tailpipe (located in the lower rear part of the vehicle) 

as possible to mitigate potential influence from the bus exhaust and waste heat. Potential 

interference from the bus exhaust was further mitigated by the fact that data was only collected 

while the vehicle was in motion, which also ensures sensor ventilation – see Figure 2 for the 

specific positioning of each sensor.  

2.3. Calibration of mobile sensors with stationary sensors 

Temperature and air quality sensors were both calibrated by their manufacturers. However, 

because the climate in Arizona is very hot and dry in the summer, additional validation was 

necessary. To accomplish this, portable sensors were placed next to stationary weather and air 

quality monitoring stations. The measurements taken by mobile sensors were then compared to 

those taken by stationary sensors. For the comparisons, stationary sites were selected that are 

located nearest to the bus routes. The meteorological station at Papago Park was used for the 

temperature comparisons from June 6 to 11, 2021 (CAP-LTER, 2022). PM10 comparisons were 

conducted from June 10 to June 16, 2021, at the Central Phoenix Station Air Monitoring Site 

(Maricopa County Air Quality Department, 2022). The meteorological conditions during the 

validation activities were typically hot and dry for the summer months in Phoenix and consistent 

with the hot and dry meteorological conditions during our data collection efforts that took place in 

July and August 2021.  

The calibration process displayed instrument reliability. The comparisons of portable 

temperature and PM10 sensors to stationary sites are shown in Figure 3. The sample sizes for 

temperature and PM10 comparisons are 562 and 799, respectively. An ordinary least square line is 

fitted in each subplot to show the magnitude of the correlation between the portable sensor and 

stationary sensor readings. The accuracy rate (𝑅2) is found to be 0.97 and 0.81, respectively for 
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the temperature and PM10 comparisons. The temperature readings by the Kestrel sensor were 

within the range of ±4ºC as compared to readings by the stationary sensors located at the site. 

However, the portable PM10 sensor reported consistently and considerably lower readings than the 

stationary PM10 sensor.  

 

Figure 3. Completed comparisons for calibration of the portable (a) air temperature and (b) PM10 sensors 

to stationary sensors at the meteorological station and county reference monitor, respectively  

This under-reporting issue with the PM10 sensor could be attributed to several factors. First, 

low-cost PM sensors, which use lasers as air particle counters, are less able to sense coarse particles 

as they fall out of the air faster than finer particles; thus, the area's distinct summer climate with a 

high proportion of coarser dust particles may have contributed to the under-reporting (Clements et 

al., 2013; Sousan et al., 2017). Second, because the airflow rate of low-cost sensors is significantly 

lower than that of reference stationary monitors, low-cost sensors pull much less air, resulting in 

less accurate measurements. Finally, low-cost sensors read particulate matter using different 

technology than reference stationary monitors, which may have also contributed to the under-

reporting. Despite these limitations and differences, the portable PM10 sensor closely follows the 

stationary sensor's trend with a relatively high accuracy rate (𝑅2=0.81) – suggesting that low-cost 

sensors can still provide meaningful insights in the context of this study (as supported by Clements 



11 

 

et al., 2017). Without any further calibration efforts, the study is carried out with the portable PM10 

sensor to account for the spatial and temporal PM10 differences along the selected bus route. 

2.4. Data collection and analysis 

The timestamps on each sensor were first properly matched at the start of each experiment day to 

assure the spatial correctness of data points. The sensors were then mounted on top of the buses 

that operated on the days of the experiment. Since the main focus of the study was on 

understanding the spatiotemporal patterns of extreme heat and pollutant concentrations, the study 

period was limited to the summer months and to the warmer days with no rain. For this reason, the 

analysis period is limited to morning and afternoon hours when heat exposure is the highest (EPA, 

2022). Data collection, accordingly, took place on July 8, 2021, and August 19, 2021, with sensors 

deployed in one vehicle on each experiment day. 

After removing the data points with missing GPS coordinates, the data were plotted on a 

map to investigate the spatial variability of temperature and PM10 conditions for the study day. As 

the circulator bus service makes a full trip in a two-hour period, the data were further analyzed for 

two-hour tours in creating spatial maps for each tour. The goal was to observe the temporal 

consistency throughout the day and identify the pockets of elevated heat and air pollution on the 

route. Here, a distinction is made between temperature and PM10 observations. For temperature 

observations, a stationary weather monitoring site† (located at Phoenix Sky Harbor Airport) is used 

to account for the temporal variability of temperature within the day. The temperature data reported 

by the monitoring site on a minute-by-minute basis is subtracted from each observation recorded 

along the route. Thus, a location where consistently higher temperatures are observed as compared 

to the weather monitoring site is considered a potential hotspot of extreme heat. However, this 

method is not used for PM10 analysis because such temporal variability for PM10 is difficult to 

 
† It should be noted that the Sky Harbor International Airport weather monitoring station is not the same 

one that was used for calibration. The reasoning is that the calibration station is not only further away from 

Maryvale Neighborhood than the airport station, but it also reports temperatures every 10 minutes. And 

because our experiment is designed to account for temporal variation on a minute-by-minute basis, we did 

not use this station to account for temporal variation in our experiment. On the other hand, we were unable 

to use the airport monitoring station for calibration purposes, simply because we did not have access to it. 

However, because the primary goal of the calibration effort was to see if the portable mobile sensor used 

in the study reported any unusual temperature readings, this does not pose a significant challenge to the 

study. 
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obtain. That is, PM10 readings were reported exactly as they were, reflecting the raw conditions in 

that specific location and time. 

Furthermore, the land-use characteristics of each location are considered in the analysis to 

attribute the spatial temperature differences observed along the route. In doing so, the correlation 

matrix between temperature differences and the landform characteristics obtained at 50-meter 

resolutions are computed. The data for land-form characteristics were generated by the Central 

Arizona-Phoenix Long-Term Ecological Research (CAP LTER) program using the 2015 National 

Agriculture Imagery Program (NAIP) data (Zhang and Turner, 2020). The statistical significance 

of the correlation coefficients in the matrix is also determined at a 95% confidence level by 

performing standard hypothesis testing, with the null hypothesis assuming that the correlation 

coefficient is equal to zero. 

3. RESULTS 

3.1. Temperature analysis findings 

When mobile temperature readings are compared to fixed temperature measurements, considerable 

neighborhood-scale variations emerge. Table 2 presents summary statistics for mobile and 

stationary temperature observations on the experimental days. Temperatures in the Maryvale 

neighborhood are modestly higher (~1°C on average) than those from the nearby stationary site. 

Peak temperatures in the area, on the other hand, were much higher, reaching nearly 49°C on July 

8 and 39°C on August 19 (where maximum temperatures recorded by the stationary site at the 

airport were measured at 44°C and 36ºC). On a point-by-point basis, the largest difference between 

mobile and stationary measurements is 6.3°C and 5.1°C on July 8 and August 19, respectively. 

Table 2. Summary statistics: Stationary versus mobile temperature measurements 

Statistics 

Experiment day 

July 8, 2021 August 19, 2021 

Mobile Stationary Difference Mobile Stationary Difference 

Minimum (oC) 35.5 35.0 -2.4 28.3 26.1 –1.8 

Maximum (oC) 48.8 43.9 6.3 38.5 36.1 5.1 

Average (oC) 41.1 40.4 0.7 33.18 32.6 0.6 
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Figure 4 shows the temporal variability of temperature data recorded by the mobile sensor 

and the stationary weather monitoring site on both experiment days. At first glance, this point-by-

point comparison appears to suggest that the mobile sensor closely follows the daily patterns of 

the temperature conditions recorded by the stationary monitoring site. However, a deeper 

examination of the figure reveals that the mobile sensor, for the most part, records hotter 

temperatures than what is reported by the nearby stationary monitoring site — with temperature 

differences exceeding 4°C on various occasions over the trial days. This shows that certain areas 

of the neighborhood might be significantly warmer, necessitating a thorough spatial investigation 

to identify potential hotspots. 

 

 

Figure 4. Mobile sensor measurements compared to measurements taken at stationary monitoring site 

on two days: July 8, 2021, and August 19, 2021 
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From the perspective of human health and heat risk mitigation, the higher maximum 

temperatures in Maryvale are particularly important. A maximum temperature of 48.8ºC in 

Maryvale compared to the airport (stationary) maximum of 43.9ºC can equate to a difference 

between “Extreme Danger” (the most severe category) and “Danger” with respect to local heat 

index charts and safety recommendations (ADHS, 2011). On relatively cooler days, maximum 

temperatures in Maryvale of 38.5ºC compared to stationary temperatures of 36.1ºC translate to a 

difference between “Danger” and “Extreme Caution” health effects and recommendations. 

 

Figure 5. Geolocated temperature differences from 8 a.m. to 4 p.m. on July 8, 2021, and August 19, 2021 

The spatial variation of temperature is investigated by mapping the geolocated temperature 

data recorded by the Maryvale Circulator as it travels along its route. Instead of employing the raw 

temperature data recorded by the mobile sensor, temperature differences (oC) between the mobile 

sensor and the nearby monitoring site are used to account for temporal variability of temperature 

over the course of the observation period. Within the relatively confined geographic area of the 

Maryvale neighborhood, there is considerable variability as temperature differences (between 
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mobile and stationary) ranged from -2.4ºC to +6.3ºC. Figure 5 depicts the geolocated temperature 

differences from 8 a.m. to 4 p.m. for the two experiment days. Colors of blue reflect mobile 

measurements that are lower than stationary readings, while shades of yellow, orange, and red 

represent mobile readings that are greater than stationary measurements. On both days, several 

locations and corridors along the Maryvale Circulator route are noticeably warmer than the rest of 

the route, indicating that these are potential hotspots where pedestrians, bicyclists, and transit 

riders (walking to and waiting at stops) are exposed to greater heat impacts than the rest of the 

population. 

 

Figure 6. Temperature differences (ºC) from the station for four tours on July 8, 2021 

Furthermore, these hotspots are investigated to determine if they remain warmer 

throughout the day. As the Maryvale Circulator takes roughly 2 hours to complete the entire 20-

mile tour, the study period is separated into 2-hour-long tours to ensure it covers the entire route 

with adequate data points. Figure 6 depicts the temperature variations on four tours (8 am to 10 

am; 10 am to 12 pm; 12 pm to 2 pm; and 2 pm to 4 pm) over the course of July 8, 2021‡. Again, 

the values in the figure show temperature differences from the nearby weather station and are 

color-coded in the same way. This tour-based comparison in Figure 6 reveals that many of the 

 
‡ The hotspots on the tour-based analysis appeared on both days, however, to conserve space, we opted to show it 

only for July 8, 2021. 
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hotspots seen in Figure 5 remain warmer no matter what time of day the temperature is monitored, 

illustrating the potential of mobile sensors to detect spatial temperature variability at finer scales. 

In addition to providing insights into how temperature conditions at the human scale tend 

to change within the neighborhood, this study also investigates the role of the built environment 

as a potential contributor to this spatial variation in temperature (and air quality). For example, 

Figure 7 shows a specific location that was observed to have elevated temperature and air pollution 

(see Section 3.2) values across nearly all observation periods. This area has a shopping mall, and 

a transit center, and is near the intersection of two major streets. The large concentration of asphalt 

and traffic associated with this location are possible contributors to the elevated levels of 

temperature and air pollution, which in turn may contribute to greater risks – especially to people 

who utilize the transit center in this area to connect to other places.  

 

Figure 7. Built environment of a potential hotspot (clearly shows excessively paved surface) 

Beyond this anecdotal approach, the relationship between the built environment and 

warmer areas is investigated statistically. For every temperature recording along the route, the 

ratios of soil, shrub, pool, cropland, building, trees, and grass are extracted at 50-meter resolutions, 

and their connections with temperature differences are evaluated. Higher temperature differences 

along the route, as shown in Table 3, are positively and significantly correlated with the ratio of 

roads, but negatively correlated with the ratios of buildings, trees, and croplands. Along with the 

expectations, trees and croplands absorb and store less heat than artificial surface materials such 
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as concrete and asphalt, therefore leading to lower temperatures. Furthermore, the finding that 

trees and buildings are inversely correlated with higher temperature differences matches prior 

studies (Parket et al., 2021; EPA, 2022b) that point to their role in reducing surface and air 

temperature through shading. 

 

Table 3. Correlation between temperature differences and land-form characteristics 

Correlation 

Land-form Characteristics 

Soil Shrub Road Pool Cropland Building Tree Grass 

Temperature 

Differences (ºC) 

Pearson’s r 0.04 -0.01 0.09* -0.03 -0.09* -0.16** -0.17** 0.01 

p-value 0.39 0.086 0.03 0.45 0.04 0.00 0.00 0.89 

Note: * p < 0.05, ** p < 0.01 

According to the temperature analysis, residents in the Maryvale neighborhood, who are 

among Arizona's most vulnerable populations, are exposed to more heat in the absence of adequate 

urban vegetation and mitigation strategies, a finding that adds to the literature on disproportionate 

heat exposure experienced by underrepresented groups (Nesbitt et al., 2019; Hsu et al., 2021). 

Furthermore, the findings suggest that the temporal and spatial variation detected by mobile 

sensors does not occur randomly due to instrument noise, since the built environment partially 

explains some of this variability. This shows that mobile sensors can not only complement 

stationary weather monitoring sites but also uncover key details about heat exposure experienced 

at the human scale. 

3.2 Air quality analysis  

Similar to temperature, considerable variability in air pollution was observed across the Maryvale 

neighborhood, with PM10 concentrations ranging from 3 μg/m3 to over 150 μg/m3. The raw PM10 

values recorded by the mobile sensor are mapped along the Maryvale Circulator. Figure 8 shows 

the concentration maps depicting geo-recorded PM10 data from 8 a.m. to 8 p.m. on July 8 and 

August 19, 2021. This allows us to see the human-scale spatial and temporal variation of PM10 

within the neighborhood. Unlike the maps that show temperature differences, the concentration 

maps (Figure 8) are generated using a kernel density algorithm to visualize raw PM10 
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measurements in units of micrograms per cubic meter of air (μg/m3). Points on the figures are 

color-coded, with shades of blue and green representing lower PM10 concentrations and shades of 

yellow, orange, and red representing higher PM10 concentrations. 

Several locations along the Circulator route appear to have higher PM10 concentrations 

than other locations. A closer examination of these locations reveals that they are located near road 

intersections or along major roadways, implying that increased vehicular movement activity 

exacerbates PM10 in these areas. Relatedly, the mobile sensing device provides a new level of 

fidelity in identifying when and where PM10 concentrations approach unsafe levels for human 

health. According to the Environmental Protection Agency (EPA, 2022a), the 24-hour average of 

PM10 concentrations in a given area must not reach 150 μg/m3 more than once per year on average 

over three years to be considered safe. Even though the 24-hour average was below the EPA 

threshold on both experiment days, PM10 concentrations exceeded 150 μg/m3 at least once on 

August 19. However, the nearest air quality monitoring station reports a maximum PM10 value of 

38 μg/m3 on that day. These insights underscore the disproportionate nature by which residents are 

exposed to potentially hazardous conditions, as well as the fact that stationary data alone may not 

reveal these conditions. It also signifies the capability of mobile sensing technologies to detect 

locations with deteriorated air quality and overcome some of the geospatial limitations of 

stationary air quality sites. 
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Figure 8. PM10 concentrations on July 8, 2021, and August 19, 2021 

The level of spatial heterogeneity and variability mobile sensors are able to capture is 

further underscored when mobile sensor measurements along the Circulator route were compared 

to data collected at the nearest stationary site. Figure 9 shows the PM10 concentrations measured 

by the closest stationary regulatory monitoring site administered by the Maricopa County Air 

Quality Department (with 5-min intervals) and the mobile sensor (with 1-min intervals) on both 

experiment days. Considering their different locations within the city, the objective of this figure 

is not to conduct a one-to-one comparison of the two sites because we would expect them to differ. 

Instead, the takeaway should be the relative differences in ranges they exhibit and what they might 

imply about the intraurban variability of air pollution.  
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Figure 9. PM10 measurements from mobile sensor and stationary monitoring site  

on July 8 and August 19, 2021 

For August 19, the range of mobile recordings (3 to 154 μg/m3) is significantly wider than 

that of stationary recordings (14 to 38 μg/m3), as shown in Figure 9. This begs the question of why 

the mobile sensor reports a greater range. Is it because mobile sensors are low-cost and low-quality, 

resulting in higher instrument noise? Or is it because mobile readings obtained at numerous sites 

provide more information about an area's air quality conditions than a stationary site collecting 

data at a single location? The validation of the mobile sensor against the stationary monitor 

revealed a significantly strong correlation between the two sensors, with an R2 of 0.81 (see Figure 

3); therefore, we believe the latter is more plausible. This suggests that, despite the sensors at air 
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monitoring stations having possibly higher precision, the information gained from these sensors is 

constrained to the exact site of the stations; consequently, the measurements collected at these 

stations may not be able to generalize to a larger area. Conversely, while mobile sensors appear to 

underestimate PM10 concentrations, they provide valuable information on air quality conditions at 

the human scale, making them well suited to inform neighborhood mitigation efforts. 

3.3 Limitations 

We acknowledge that analysis focusing on one neighborhood, in one city, in a relatively short 

period, may not be sufficient to reach definitive conclusions that are applicable across a wide suite 

of contexts. There are also some general limitations associated with mobile sensors. Due to the 

nature of mobile measurements, sampling frequency at a given location is substantially shorter as 

compared to stationary monitoring sites – thus, resulting in a short snapshot at a certain location 

in time (Van den Bossche et al., 2015; Li et al., 2018). These sensors also have longer response 

times to stimuli (with a minimum of a few seconds) and are often prone to temporal drift, cross-

sensitivity, and weather dependence (Snyder et al., 2013; Arfire et al., 2016). As a result, the data 

collected by these sensors is usually less reliable than that collected by standard stationary sensors. 

Fine-scale sampling enabled by mobile sensing technology thus comes at the cost of diminished 

measurement precision and accuracy. 

To elaborate more on these trade-offs, limitations primarily relate to the lower inherent 

accuracy and higher sensor lag times of the mobile sensors (compared to more expensive and more 

sophisticated sensors). Mobile sensor measurements may also be impacted by the transient nature 

of the environment in which they were deployed. For example, when traveling in specific 

directions at specific times of day, the Kestrel sensors may have been exposed to direct sunlight, 

resulting in higher-than-expected temperature readings. We took a variety of steps to account for 

and minimize the influence of these limitations (see Section 2). However, it is possible that some 

may have persisted in various forms. For example, given response times and sample rates for the 

sensors, movement of the vehicle during measurement, and inherent uncertainty with the GPS 

tracker, we anticipate the location of our measurements to have an uncertainty range of at least 15 

meters. Similarly, based on calibration and validation activities, there is the possibility that PM10 

measurements from the mobile sensors may be underestimating actual concentrations. To address 
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this, regular and consistent calibration is recommended for any extended deployment of mobile 

sensors to ensure that there isn’t drift in sensor readings and accuracy over time.   

Despite the possible limitations and uncertainties described above, we do not expect that 

they will have a significant impact on the results and insights from our analysis. This is primarily 

due to our focus on identifying relative differences in temperature and air quality across time 

and/or space, rather than measuring raw values. To that end, we want to emphasize that, for the 

time-being, mobile sensors should be viewed as a complement to the existing stationary network, 

not a replacement. In particular, they are well-suited for identifying hotspots and relative 

heterogeneity in environmental conditions. At that point, more robust “field-test” sensors could be 

deployed to confirm the specific location and conditions of trouble areas, as well as any targeted 

interventions.  

To facilitate the expanded adoption of sensor-embedded transit systems, we highlight some 

logistical challenges we faced due to battery and data storage limitations with the sensors. Sensor 

capacity constraints limited data collection to single-day (approximately 12 hours) deployments. 

This required twice-daily coordination between team members and our public transit partners (one 

for sensor deployment in the morning and another for sensor retrieval in the evening). This level 

of coordination may not be possible or feasible for other transit authorities in other locations. 

Fortunately, the continual development and increased availability of next-generation sensors will 

help mitigate these issues moving forward. In particular, sensors with longer battery lives, the 

ability to connect to on-board power supplies, and/or the ability for cloud-based 

storage/transmission of data will reduce coordination burdens in future endeavors and enable more 

continuous deployment and data collection. 

4. DISCUSSIONS 

For both temperature and air quality, our analysis underscores the value of looking at finer scales 

to truly appreciate (and address) exposure to hazards like extreme heat and air pollution. Our 

approach and results also highlight the potential for mobile sensing platforms to produce these 

finer-scale insights, especially regarding observing variability across and within neighborhoods. 

In the absence of finer-scale observations and considerations of geospatial heterogeneity, heat 

advisories/warnings and air quality standards based on information from stationary sites appear to 

be susceptible to under-representing the actual conditions to which people living and traveling in 



23 

 

a specific community are exposed – see discussion of local heat indexes in Section 3.1 and 

discussion of EPA air quality standards in Section 3.2. With the expansion and increased adoption 

of mobile sensors, one can envision policies and actions that are attuned to the times and locations 

where exposure pathways are most prevalent. For example, revised air quality standards could be 

supported by measurements at the street or neighborhood scale (as opposed to the regional scale), 

and heat indices could be tailored to individual communities rather than having a uniform index 

for the entire urban area.  

Related to the observed spatial and temporal variability, mobile sensors allow for the 

identification of specific “hotspots” where temperature and/or air pollution conditions are 

particularly elevated compared to other locations and/or times – both within neighborhoods and 

across cities. For example, the identification of the mall and co-located transit center as a hotspot 

for both temperature and air pollution could inform several actions and policies to mitigate risk 

from these hazards. Information about the elevated hazard levels could be shared with transit users 

(particularly those that frequently use the identified transit center), which in turn result in behavior 

changes (e.g., wearing a mask to reduce exposure to air pollution; altering travel times to avoid 

high exposure conditions). Similarly, the transit authority can ensure that the travel center is 

properly ventilated and cooled to minimize exposure to heat and air pollution for riders waiting 

for their bus. Additionally, city officials could develop policies (e.g., altering parking minimums 

in building codes) and/or incentives (e.g., rebates for planting trees and/or increasing pervious 

surfaces) to reduce the amount of asphalt and parking activity in the area.  

Although certain “hotspots” appear to remain relatively persistent across time (e.g., Figure 

7), others appear to shift within and between days (e.g., Figures 6 and 8). For example, the mall 

parking lot consistently shows up as a hotspot while the large shopping center in the northeast part 

of the sample area varies as a hotspot. Ultimately, the collective results and observations from the 

mobile data point to a more complex and nuanced understanding of temperature and air quality 

than current approaches and stationary measurements may provide. Hazard levels and exposure 

pathways vary widely across relatively confined geographic areas and shift over the course of time. 

Essentially, not all parking lots, intersections, and land cover are created equal when it comes to 

extreme heat and air pollution. Striving toward mobile and distributed sensor networks can help 
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us better understand micro-climates and unpack how people experience (and are exposed to) their 

environments. 

Transit-embedded mobile sensing platforms are not the only approach for increasing the 

fidelity by which we observe and respond to urban environmental hazards. One possible option 

would be to install more stationary towers throughout a given region. However, financial and space 

constraints limit the feasibility of this option. In the absence of constructing new stationary towers, 

mobile sensing platforms can supplement the existing monitoring network by allowing for targeted 

assessment of specific areas under specific conditions – especially as mobile sensors become 

increasingly accurate and affordable. Coupling sensing with transit systems shows promise for 

providing insights at these finer scales (e.g., transit stops, intersections, road segments). Mobile 

sensing platforms can also help address environmental justice and equity issues by providing 

supplemental monitoring in marginalized communities – especially in communities not well 

represented by the existing stationary monitoring network. For instance, transit riders often 

comprise potentially vulnerable populations (e.g., young, elderly, lower socio-economic standing) 

and typically have elevated exposure to hazards (due to walking to and waiting at transit stops). 

Sensor-embedded transit systems allow for the collection of information that is highly relevant to 

their specific routes and exposure pathways and enables more curated mitigation efforts. 

Additionally, sensor-embedded transit systems can complement the monitoring of the progress 

and effectiveness of localized heat and air pollution mitigation strategies. For example, if a city 

plants several trees in a specific area in an attempt to mitigate extreme heat and air pollution, 

sensor-embedded buses/trains along the tree-planting corridor could provide valuable before and 

after measurements of temperature and air quality to better quantify and track the effectiveness of 

the mitigation effort(s). 

Finally, we appear to be moving toward a model of distributed technology that enables a 

level of cognition that we have not had previously. As small-scale sensors continue to become 

more accurate and affordable, one can envision a future where nearly every street corner, building, 

and vehicle is outfitted with connected temperature and air quality sensors. Until we reach that 

point, exploring and implementing sensor-embedding mobile platforms appears to be well 

positioned to provide some initial insights into the potential role and implications that this 

increased cognition can have on individual and collective decision-making. With a relatively small 



25 

 

set of observations, we were able to identify new levels of nuance and refinement with respect to 

understanding localized exposure to and mitigation of extreme heat and air pollution. As follow-

up research efforts collect more data (over longer periods of time, across more locations, for more 

hazards, and at increasingly finer scales), we can continue to move toward a finer-scale 

understanding of heat and air pollution in complex and heterogeneous urban environments. 

Ultimately, this refined understanding can help us shift from place-based to person-based exposure 

identification and mitigation which will be critical for equitably and effectively protecting the well-

being of all urban residents.  

5. CONCLUSION 

This paper focuses on the efficacy of low-cost mobile sensors in uncovering the spatial and 

temporal variations of excessive heat and air pollution experienced at the street level. Low-cost 

temperature and air quality sensors were mounted on public transportation vehicles as part of an 

experiment to monitor fine-scale on-road heat and PM10 concentrations along a bus route in 

Phoenix, Arizona. The experiment results showed that mobile sensing platforms can provide a 

more in-depth and nuanced understanding of temperature and air quality conditions in urban areas 

than conventional approaches based on stationary monitoring data. Hazard levels and exposure 

pathways varied and shifted over the course of time across the relatively confined study area. 

Furthermore, the experiment results revealed that mobile sensors can be used to identify certain 

"hotspots" where temperature and/or air pollution levels are significantly higher than in other 

locations and/or times – both within neighborhoods and across cities. 

 Significant gaps remain in the quality of information concerning the risks associated with 

extreme heat and air pollution, as conditions continue to be typically monitored by a sparse 

network of stationary sensors that provide information at a large geographic scale. With portable 

sensors becoming more accurate and affordable, we may foresee a future in which air quality and 

meteorological conditions are continuously monitored at every street corner and building. Until 

we reach that point, equipping public transit vehicles with low-cost sensors and developing mobile 

sensing platforms can be an effective way to collect fine-grained heat and air quality data. This 

way, it is possible to enhance our understanding of urban microclimates and heat and air quality 

hazards that transit riders, bicyclists, and pedestrians experience, resulting in new insights and 

opportunities for targeted intervention.  
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