
 
 

Development of an Integrated Model System of Transport and Residential 1 

Energy Consumption 2 

 3 

Shivam Sharda  4 
Arizona State University, School of Sustainable Engineering and the Built Environment 5 
660 S. College Avenue, Tempe, AZ 85287-3005 6 
Tel: 480-727-3613; Email: ssharda@asu.edu 7 
 8 

Taehooie Kim 9 
Arizona State University, School of Sustainable Engineering and the Built Environment 10 
660 S. College Avenue, Tempe, AZ 85287-3005 11 
Tel: 480-727-3613; Email: taehooie.kim@asu.edu 12 

 13 

Sara Khoeini 14 
Arizona State University, School of Sustainable Engineering and the Built Environment 15 

660 S. College Avenue, Tempe, AZ 85287-3005 16 
Tel: 480-965-3589; Email: skhoeini@asu.edu 17 

 18 

Irfan Batur 19 
Arizona State University, School of Sustainable Engineering and the Built Environment 20 

660 S. College Avenue, Tempe, AZ 85287-3005 21 
Tel: 480-727-3613; Email: ibatur@asu.edu 22 

 23 

Ram M. Pendyala 24 
Arizona State University, School of Sustainable Engineering and the Built Environment 25 

660 S. College Avenue, Tempe, AZ 85287-3005 26 

Tel: 480-727-4587; Email: ram.pendyala@asu.edu  27 
 28 
 29 

Submitted for Presentation and Publication 30 
99th Annual Meeting of the Transportation Research Board 31 
 32 

Committee on Transportation Demand Forecasting (ADB40) 33 
Subcommittee on Integrated Modeling (ADB40(2)) 34 
Call for Papers: Energy Demand and Consumption Analysis with Integrated Modeling of 35 
Transportation Systems  36 
 37 

Word count: 6,999 text + 2 tables x 250 = 7,499 words 38 
 39 

August 201940 

Manuscript

mailto:ssharda@asu.edu
mailto:taehooie.kim@asu.edu
mailto:skhoeini@asu.edu
mailto:ibatur@asu.edu
mailto:ram.pendyala@asu.edu


Sharda, Kim, Khoeini, Batur, and Pendyala   

2 
 

ABSTRACT 1 
The energy footprint of households is inextricably tied to the amount of travel undertaken by 2 
households. The transportation energy consumption is dependent on the mix of vehicles that a 3 
household owns and uses, and the extent to which different vehicles in a household are driven. 4 

Integrated models of activity-travel demand and transport energy consumption often do not 5 
consider the mix of vehicle types owned and used by households, thus making it difficult to assess 6 
the energy implications of shifting vehicle/fuel type choices – particularly in a rapidly evolving 7 
marketplace. More importantly, integrated models of activity-travel demand and transport energy 8 
consumption do not consider the residential energy consumption implications of travel. If people 9 

travel more (and spend more time outside home), they may consume more travel energy, but 10 
consume less in-home residential energy.  Thus, an integrated model system that tightly connects 11 
activity-travel demand, travel energy consumption (sensitive to vehicle fleet/fuel type), and 12 
residential energy consumption (sensitive to activity-travel choices) is needed to obtain a holistic 13 

picture of household energy footprints.  This paper describes the integrated model system that 14 
connects these three entities.  The model is developed by fusing information between two survey 15 

data sets, namely, the National Household Travel Survey (NHTS) data set and the Residential 16 
Energy Consumption Survey (RECS) data set. The integrated model system is applied to a 17 

synthetic population for the Greater Phoenix area in Arizona to illustrate the efficacy of the model 18 
system.  19 

 20 
Keywords: Integrated models, Transport energy, Residential energy, Household energy footprint, 21 
Data fusion and imputation 22 

 23 
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1. INTRODUCTION 1 
The US Environmental Protection Agency (EPA) estimates that the nation’s transportation, 2 
commercial, and residential sectors contributed 29, 19, and 21 percent respectively, of the total 3 
greenhouse gas (GHG) emissions in 2016 (EIA, 2017), indicating that human activity plays a 4 

significant role in shaping the carbon footprint in communities and cities.  It is therefore of 5 
considerable importance to quantify the consumption of energy that is attributable to each of these 6 
sectors, as the energy consumption patterns directly translate into GHG emissions that contribute 7 
to global climate extremes.  In an effort to address this need, this paper presents an integrated 8 
model system that can be used to compute the household energy footprint.  9 

Within the scope of this paper, household energy footprint is assumed to comprise of two 10 
main components. The first component is the transport energy consumption and the second 11 
component is the residential energy consumption that stems from electricity, natural gas, and other 12 
utility expenditures. The transport energy consumption is dependent on the mix of vehicles that a 13 

household owns and uses, and the extent to which each of the different vehicles in a household is 14 
driven. The residential energy footprint primarily stems from the consumption of electricity and 15 

natural gas, although other fuel sources may also contribute to a household’s utility expenditure 16 
pattern. The scope of analysis of residential energy footprint can be very broad depending on the 17 

extent of the supply chain that is considered and the extent to which embedded energy is included 18 
in the accounting system. For purposes of quantifying and characterizing the residential energy 19 
footprint in this paper, only the actual operational energy consumption (utility expenditures) is 20 

considered. The total household (operational) energy footprint may then be viewed as a sum of the 21 
transport energy consumption and residential energy consumption, with both components 22 

accounting only for the operational energy consumption within the respective domains. 23 
There is a relationship, however, between residential and transport energy consumption. 24 

The residential energy consumption may be posited as being influenced by activity-travel 25 

characteristics of household members. If household members travel extensively outside the home, 26 

then the residential energy consumption may decrease if the households take necessary energy 27 
saving precautions when they are not at home. Such households may have large transportation 28 
energy footprints and smaller residential energy footprints. Conversely, households that spend a 29 

lot of time at home may have smaller transport energy footprints, but larger residential energy 30 
footprints. The estimation of the total energy footprint of a household should take into account the 31 

potential relationship that may exist between transport and residential energy footprint.   32 
 Despite considerable work in this area, an integrated model of household energy footprint 33 

that accounts for the relationship between transport and residential energy consumption remains 34 
elusive.  This paper aims to fill this critical gap by presenting a comprehensive integrated model 35 
system and energy analysis tool that can be used to quantify the total household energy footprint, 36 
including the separate transport and residential energy consumption components. The model 37 

system is developed through a multi-step process that involves fusing information contained in the 38 
2017 National Household Travel Survey (NHTS) data set (which includes detailed vehicle and 39 
travel information) and the 2015 Residential Energy Consumption Survey (RECS) data set (which 40 

includes detailed residential energy-related information). The model system involves computing 41 
the transport energy footprint based on household vehicle mix and miles of travel, and then 42 
computing both electricity and natural gas consumption while explicitly accounting for the 43 
influence that activity-travel behavior may have on the residential energy consumption patterns.  44 
  The remainder of this paper is organized as follows. The next section offers a brief 45 
overview of the work in this topic area. The third section presents a brief overview of the two data 46 
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sets used and fused in this study. The fourth section offers a detailed description of the integrated 1 

modeling framework and methodology. The fifth section presents an illustrative application of the 2 
model system to a synthetic population for the Greater Phoenix area in Arizona.  The sixth and 3 
final section offers concluding remarks.   4 

 5 

2. UNDERSTANDING AND QUANTIFYING THE HOUSEHOLD ENERGY FOOTPRINT 6 
There is a vast body of literature devoted to analyzing and quantifying energy consumption 7 
patterns of various entities. However, modeling tools developed thus far do not explicitly account 8 
for inter-dependencies among constituent energy consumption components that are vital to 9 

forecasting the energy footprint in response to changes in population characteristics and built 10 
environment conditions, technology, transportation network attributes, and public policies.  11 
 Many studies have focused on analyzing residential energy consumption patterns.  It has 12 
been reported that spatial configuration and land use patterns are important determinants of 13 

residential energy consumption (e.g., Wang et al, 2016).  Yang et al (2019) studied the impact of 14 
urbanization on China’s residential energy consumption and found that increased urbanization 15 

leads to an increase in both urban and rural residential electricity consumption. However, another 16 
study using data from Thailand found that urban residents consume less energy than rural 17 

counterparts (Meangbua et al, 2019). Other studies (e.g., Belaid, 2019) have explored the influence 18 
of dwelling unit characteristics and size, household characteristics, and household behaviors on 19 
residential energy consumption. Variation in temperatures, especially due to global climate 20 

change, significantly influences residential energy consumption. Maengbua et al (2019) concluded 21 
that a 1̊ Celsius rise in temperature results in 200 percent increase in energy consumption. More 22 

recently, Zhang et al (2018) applied a microsimulation-based approach to estimate residential 23 
energy consumption. The study involved the fusion and synthesis of data across energy and census 24 
data sets to estimate a model of residential energy consumption of the individual household. The 25 

work in this paper is intended to extend that model in very significant ways by integrating 26 

transportation energy consumption and activity-travel behaviors to obtain a holistic household 27 
energy footprint estimation model system.  28 
 Likewise, there is a vast body of work dedicated to measuring and quantifying transport 29 

energy consumption. Recently, Brand et al (2019) assessed the impacts of lifestyle changes and 30 
transition to electric vehicles (EV) on transportation energy consumption. Disruptive 31 

transportation technologies offer a promising mobility future, but an uncertain energy consumption 32 
future. Wadud et al (2016) assessed the impact of autonomous vehicles on energy consumption 33 

and found that automation could double energy use or cut it to one-half of current levels under 34 
different scenarios. Similarly, Chen et al (2017) concluded that fuel consumption in an autonomous 35 
vehicle future would reduce by 45 percent under optimistic scenarios and increase by 30 percent 36 
under pessimistic scenarios. Another study assessed the energy implications of ride-hailing 37 

services in Austin and found that the energy use may increase by 41-90 percent compared to 38 
baseline, pre-ride hailing, personal travel conditions (Wenzel et al, 2019). Ding et al (2017) 39 
explored the impacts of the built environment on vehicle miles of travel (VMT) and energy 40 

consumption and found that vehicle energy consumption is inversely related to employment 41 
density and street connectivity. Other efforts aimed at quantifying transport energy consumption 42 
include those by Tirumalachetty et al (2013) and Das and Parikh (2004).  More recently, Garikapati 43 
et al (2017) developed a framework to estimate household energy footprint at the traffic analysis 44 
zone (TAZ) level through an interface with a standard metropolitan travel demand model. They 45 
noted that any travel energy footprint calculation that does not account for variation in vehicle fleet 46 
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mix distribution across space is likely to not only be erroneous, but also fail to provide the policy 1 

sensitivity that may be desired for analyzing alternative fuel vehicle scenarios (owing to evolution 2 
of technology, changes in the marketplace, or incentives and disincentives instituted through 3 
public policy interventions).  4 

 In summary, there is much interest in analyzing and computing household energy 5 
consumption patterns. In fact, a few studies have attempted a more holistic and integrated approach 6 
to energy analysis; for example, Shekar et al (2018) studied the impact of changes in activity time 7 
use on energy consumption. The authors find that lifestyle changes caused by technology 8 
contribute to shifts in energy use across sectors. Despite these and many other advances (e.g., 9 

Sheppard et al, 2017; Auld et al, 2018) in the development of energy modeling tools, an integrated 10 
model system that considers the inter-relationship between transport and residential energy 11 
consumption in computing a household energy footprint remains elusive; this effort is intended to 12 
fill this gap.   13 

 14 

3. THE TRAVEL AND ENERGY SURVEY DATA SETS 15 
An integrated transport and residential energy analysis tool requires information from two major 16 
survey data sets as explained previously. Transportation, activity participation, and vehicle fleet 17 

related information need to come from a travel survey data set while residential energy 18 
consumption information needs to come from an energy survey data set. For the development of 19 
the integrated model, the two data sets used in this study are the 2017 National Household Travel 20 

Survey (NHTS) data set and the 2015 Residential Energy Consumption Survey (RECS) data set. 21 
To control for geographic variations, the model development and application efforts utilized 22 

samples exclusively from the western region of the country in this study.  The model system can 23 
be estimated, calibrated, and applied in any context using appropriate geographically local data.  24 
 The National Household Travel Survey (NHTS) data set is derived from a large scale travel 25 

survey conducted about every 8-10 years by the US Department of Transportation to understand 26 

and quantify travel undertaken by people on a daily basis. Respondent households are asked to 27 
furnish detailed information about household and person level socio-demographic characteristics, 28 
vehicles owned or leased by the household, and trips undertaken by each member of the household 29 

on a specific travel day.  Thus, the NHTS is a rich source of information about vehicle ownership 30 
and fleet composition for households, which is precisely the information needed to compute the 31 

transport energy consumption of households.   32 
The integrated model system includes a household vehicle fleet composition and utilization 33 

(VFCU) model so that energy estimates are sensitive to vehicle fleet mix.  In this study, four 34 
vehicle types were considered: car, van, SUV, and truck. These four vehicle types were further 35 
subdivided according to age based on whether the vehicle is less than or equal to eight years old. 36 
Thus, there are a total of eight vehicle type categories; in addition, the motorcycle is added as a 37 

ninth vehicle category. A multiple discrete continuous extreme value (MDCEV) model of VFCU 38 
is developed in this effort to determine the mix of vehicle types that a household may own, together 39 
with the amount of mileage that each vehicle will be driven by the household on an annual basis 40 

(Bhat, 2008). Information about vehicle type and mileage is available in the NHTS, thus making 41 
it possible to estimate such a model. In addition, the NHTS provides detailed activity-travel 42 
information for each member of the household for a specific travel survey day. The activity-travel 43 
information is used to derive the total time that an individual spends outside home at various 44 
activity locations, time spent traveling, and time spent in home (although in-home activities are 45 
not explicitly recorded). By aggregating information about travel and activities across individuals 46 
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within a household, it is possible to derive the total time spent outside home, inside home, and 1 

traveling for a household.  2 
 The Residential Energy Consumption Survey (RECS) data set is derived from a large scale 3 
energy consumption survey that is conducted about every six years. The most recent edition of the 4 

RECS data set is of 2015 vintage and used in this study. Although the sample size is reasonably 5 
large (by survey design standards), the sample is rather small when compared with the sample size 6 
for the NHTS. The sample size utilized in this study comprises 1,555 households (with complete 7 
information) distributed across the western region of the country. Similar to the NHTS, the RECS 8 
data set includes information about the respondent household, together with detailed information 9 

about residential energy consumption – that can be used to estimate residential electricity and 10 
natural gas consumption models.  11 
 To account for potential inter-relationships between transport and residential energy 12 
consumption, the proposed integrated modeling framework involves imputing vehicle fleet 13 

composition and utilization (VFCU) information and activity-travel behavior information derived 14 
from the NHTS to the household records in RECS. The enhanced RECS data set can then be used 15 

to estimate residential energy consumption models that are sensitive to activity-time allocation 16 
patterns, VFCU, and transport energy consumption, as well as household characteristics, location 17 

attributes, climatic conditions, and housing unit characteristics. 18 
Table 1 presents a summary of the two household samples. A slightly larger percent of 19 

households in the RECS data rent their home compared to the sample in the NHTS data. The 20 

household income categories do not line up exactly between the two surveys; in the NHTS, nearly 21 
30 percent of households make less than $35,000, while in the RECS, nearly 40 percent of 22 

households make less than $40,000. Over 85 percent of households in both data sets reside in urban 23 
areas. The distribution of the sample from a geographic perspective suggests there is significant 24 
differences in the spatial distribution of the samples across the western region, but the differences 25 

do not adversely affect the model development efforts described in this paper. Similarly, the two 26 

samples exhibit noticeable differences in distributions of household size, number of adults and 27 
children, and dwelling unit type. While these differences are noteworthy and merit some additional 28 
investigation, they do not adversely affect data fusion/imputation processes here because models 29 

are specified to account for such differences.  In terms of other characteristics, nearly 50 percent 30 
of the households reside in hot-dry/mixed-dry conditions and about 36 percent of the households 31 

have three bedrooms. The table also furnishes descriptive statistics for square feet of residences.  32 
 33 

4. MODEL DEVELOPMENT AND ESTIMATION RESULTS 34 
This section of the paper provides a summary of the model development and estimation process.  35 
The effort undertaken in this study can be broken down into two distinct phases. First, there is the 36 
model development phase in which information is fused between two data sets and models are 37 

estimated so that they can be applied to any region’s population to quantify the household energy 38 
footprint.  Thus, there is the data fusion and model estimation phase (Figure 1, Steps 1-4).  Second, 39 
there is the model application phase (Figure 1, Step 5). In this phase, the efficacy of the model is 40 

demonstrated by applying the model system developed in the first phase to a real-world case study.   41 
 42 
 43 
 44 
 45 
 46 
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TABLE 1  Description of Household Characteristics (Western Region) 1 
2017 National Household Travel Survey (NHTS) 

Household Characteristics (N = 26,743 households) 

2015 Residential Energy Consumption Survey (RECS) 

Household Characteristics (N = 1,555 households) 

Variable                                                   Value (%) Variable                                                 Value (%) 

Home ownership Home ownership 

    Own 72.4    Own 66.2 

    Rent 27.6    Rent 33.8 

Annual Household income  Annual Household income  

    Low (less than $35,000) 26.4    Low (less than $40,000) 35.9 

    Medium ($35,000 to $99,999) 41.9    Medium ($40,000 to $99,999) 37.0 

    High ($100,000 or more) 31.7    High ($100,000 or more) 27.1 

Household in urban/rural area  Household in urban/rural area  

    Urban 86.6     Urban 86.9 

    Rural 13.4     Rural 13.1 

Region  Region  

    Mountain West States 15.7     Mountain West States 30.2 

    Pacific States 84.3     Pacific West States 69.8 

Household Size   Household Size   

    One 31.8     One 20.1 

    Two 42.6     Two 37.2 

    Three or more 25.6     Three or more 42.7 

Number of Adult household members (Age ≥ 18 years) Number of Adult household members (Age ≥ 18 years) 

    One 34.4     One 24.1 

    Two 54.6     Two 55.7 

    Three or more 11.0     Three or more 20.2 

Number of Young household member (Age ≤ 17 years) Number of Young household member (Age ≤ 17 years) 

    Zero 84.4     Zero 65.6 

    One 8.2     One 14.2 

    Two or more 7.4     Two or more 20.2 

Housing unit type*  Housing unit type  

    Detached 70.5     Detached 68.7 

    Attached 26.2     Attached 9.1 

    Apartment 3.3     Apartment 22.2 

  Climatic Condition  

     Very Cold/Cold 22.8 

     Hot-Dry/Mixed-Dry 48.2 

     Hot-Humid 1.7 

     Mixed-Humid 27.3 

  Number of Bedrooms  

      ≤ One 12.0 

      Two 25.9 

      Three 36.1 

      Four or more 26.0 

  
Total Square Feet of Home 

Min Max Mean 

  228 7986 1862.6 

*Housing unit type information is not available in 2017 NHTS and was imputed based on 2009 NHTS data. 2 
   3 
 4 
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 1 

Figure 1 Model Development and Application Framework 2 
 3 

An integrated model of transport and residential energy consumption should include 4 
components capable of estimating and quantifying:  5 

 Transport energy consumption due to vehicle fleet mix and vehicle miles of travel 6 

 Electricity consumption due to household operations 7 

 Natural gas consumption due to household operations 8 
The first step of the system development process involved estimating a vehicle fleet composition 9 
and utilization (VFCU) model system on the NHTS data set. The VFCU model system estimated 10 

and implemented here is similar to that developed previously (You et al, 2014). The model system 11 

includes a number of components:   12 
a) A household mileage budget prediction model: The MDCEV model  allocates a continuous 13 

household mileage to different vehicle alternatives, thus creating a vehicle fleet 14 

composition and mileage profile for each household. To accomplish this, a budget 15 
prediction model is needed. The mileage reported in the NHTS data is used to estimate a 16 

log-linear regression model of total household mileage.  17 
b) A MDCEV model of vehicle fleet composition: The MDCEV model explicitly recognizes 18 

that households may choose to own and consume multiple vehicles of different types. A 19 
total of nine vehicle-type alternatives are considered in this study and the MDCEV model 20 

is estimated for this choice set. The model is capable of accounting for diminishing 21 
marginal utility (satiation effects) and zero consumption (corner solutions) wherein some 22 
vehicle alternatives may not be chosen by a household at all. 23 

c) Ordered Probit models of vehicle counts by type: The MDCEV model is able to predict the 24 
types of vehicles that a household owns (consumes), but it does not explicitly provide the 25 
number of vehicles within each type that a household may own. For example, a household 26 
may own two cars that are less than eight years old. While the MDCEV model is able to 27 

predict that the household owns cars less than eight years old, it does not explicitly provide 28 
a count of the number of cars within that vehicle class. The ordered probit models of vehicle 29 
counts by type help establish the number of vehicles that are owned within each class of 30 
vehicles that the MDCEV predicts that a household owns.   31 
 32 
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This entire VFCU model stream was estimated on the NHTS sample for this study and the model 1 

was subjected to extensive testing and validation. A few additional steps explained in You et al 2 
(2014) were implemented to ensure that the model predictions matched real world vehicle fleet 3 
composition and utilization distributions. 4 

 The second step of the process involved estimating a MDCEV model of activity time 5 
allocation (ATA). The activity time allocation model allocates a budget of 1440 minutes to various 6 
activity categories including out-of-home mandatory activity time (e.g., work, school), out-of-7 
home non-mandatory activity time (e.g., social, shopping), in-home time, and travel time. Further, 8 
separate MDCEV time allocation models were estimated for weekdays and weekend days to 9 

account for the fact that individuals perform different activities by day of week with consequent 10 
implications for residential energy consumption patterns. The activity-travel diary information in 11 
the NHTS is used to compute these time durations for each household in the sample. The household 12 
time budget is assumed to equal 1440 × number of adults in the household × number of 13 

weekdays/weekend-days in a year.  This budget is then allocated through a multiple discrete 14 
continuous choice process to the four broad activity categories. Because the budget is 15 

predetermined in the activity time allocation (ATA) context, there is no need for a model 16 
component dedicated to estimating the budget. The MDCEV-predicted time allocation patterns 17 

are compared against the actual patterns in a 20 percent holdout sample to calibrate and validate 18 
the model. The model was found to perform very well in replicating observed distributions of 19 
activity time allocation and was hence deemed appropriate for imputing activity time allocation 20 

patterns to households in the RECS data.   21 
 The third step involved the application of the MDCEV model of vehicle fleet composition 22 

and utilization (estimated in Step 1) to the RECS data set to predict, impute, and append vehicle 23 
ownership and mileage information to the household records in the RECS data set. Similarly, the 24 
MDCEV model of activity time allocation was applied to the household records in the RECS data 25 

set to estimate and append the amount of time that each household devoted to various activity 26 

categories. It should be noted that all records in the RECS data set are household level records; 27 
hence the time allocation pattern predicted and appended corresponds to activity durations at the 28 
household level (for example, the time spent traveling corresponds to the total time spent traveling 29 

accumulated over all adult household members).   30 
 At the end of the third step, each RECS household record has vehicle fleet composition 31 

information and corresponding annual mileage values. These vehicle mileage values were 32 
converted into transportation energy consumption estimates using the fuel economy data published 33 

by the US Environmental Protection Agency (2018). Using energy conversion factors, the total 34 
BTU of transport energy consumption was computed for each household and appended to the 35 
records in the RECS data set. It should be noted that vehicle body type and age are explicitly 36 
considered in the computation of the transportation energy footprint.      37 

 The fully enhanced RECS data set now contains information about household 38 
characteristics, climatic conditions, and the housing unit (original variables contained in RECS), 39 
together with vehicle fleet composition and utilization information, transport energy consumption 40 

information, and household activity time allocation information. In the fourth and final step, this 41 
enhanced data set was used to estimate a seemingly unrelated regression (SUR) equations model 42 
of residential electricity and natural gas consumption (these variables are native to the RECS data 43 
set). The SUR model recognizes the presence of error correlation between the two linear regression 44 
equations embedded in the model system and incorporates transport energy consumption and 45 
activity time allocation variables as explanatory factors, thus capturing the potential inter-46 
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dependency between residential energy consumption and household time allocation to activities 1 

and travel. Estimation results for the SUR model are presented in Table 2. 2 
 3 

TABLE 2 Seemingly Unrelated Regression (SUR) Equations Model Estimation Results  4 

Electricity Regression Equation Natural Gas Regression Equation 

Explanatory Variable Coef (t-stat) Explanatory Variable  Coef (t-stat) 

Constant 36423 (19.12) Constant 10637.6 (4.60) 

Home Ownership = Owned 2750.3 (2.20) Low Income Hhld (< $40,000) -3895.8 (-2.53) 

High Income Hhld (≥ $100,000) 1809.7 (1.67) High Income Hhld (≥ $100,000) 5099.1 (3.02) 

Number of Adults ≥ 3 (age ≥ 18) 2958.8 (2.45) Number of Adults ≥ 3 (age ≥ 18) 2639.3 (1.52) 

Housing unit type = Apartment -10470.0 (-6.86) Housing unit type = Apartment -15036.5(-7.97) 

Location = Urban -10649.6 (-7.31) Location = Urban 15878.4 (7.95) 

Region = Mountain 5580.1 (4.39) Region = Mountain 14138.1 (8.86) 

Climate = Mix-Humid 4581.1 (3.88) Climate = Mix-Humid -4925.1 (-3.00) 

Number of Bedrooms = 1 -2203.6 (-1.18) Number of Bedrooms = 1 -3690.1 (-1.46) 

Total Square Feet  ≤ 600 sq ft -4290.6 (-2.00) Number of Bedrooms ≥ 4 15277.8 (9.39) 

Annual Out-of-Home Non-Mandatory 

Activity Duration× HHSize = 1 
-0.054 (-2.78) 

Annual Out-of-Home Non-Mandatory 

Activity Duration × HHSize ≥ 3 
0.010 (2.29) 

Annual Out-of-Home Non-Mandatory 

Activity Duration × HHSize ≥ 3 
0.0093 (3.02) Travel Time Duration × HHSize ≥ 3 0.011 (1.93) 

Travel Time Duration × HH Size =1 -0.067 (-2.95)   

Number of Observations: 1,555 households 

R-squared: 0.199 

Number of Observations: 1,555 households 

R-squared: 0.269 

 5 

 Model estimation results are behaviorally intuitive and consistent with expectations, 6 

potentially suggesting that the data imputed to RECS is consistent with patterns of energy 7 
consumption and household activity time allocation that are seen in the real world.  In the 8 
electricity consumption regression equation, it is found that out-of-home non-mandatory activity 9 

time (e.g., time spent outside home shopping or socializing) negatively affects electricity 10 
consumption for one-person households, but positively for three or more person households. When 11 

the individual in a single-person household spends time outside home, there is presumably nobody 12 
at home – thus reducing energy consumption.  In a large household with three or more persons, it 13 
is possible that some individuals are at home (consuming energy) even when others in the 14 

household are pursuing activities outside home. Thus, multi-person households are likely to exhibit 15 
higher levels of activity both inside and outside home, thus contributing to a larger energy 16 

consumption footprint.  Similar findings emerge for out-of-home travel time for single person 17 
households. High-income households consume more electricity than other households, 18 

presumably because they can afford greater levels of consumption of goods and services (e.g., 19 
ability to own large homes with larger number of rooms) (Maengbua et al, 2019).  Larger 20 
households consume more electricity, as expected. Homes in urban areas consume less electricity 21 
as do households in apartments. These tend to be smaller homes in urban locations and hence 22 
consume less energy (Maengbua et al, 2019). Similarly, houses with one bedroom and square 23 

footage less than 600 feet consume less electricity, a finding similar to that reported by Belaid et 24 
al. (2019). Houses in mix-humid conditions and mountain regions tend to consume more 25 
electricity, presumably due to the need to run the air conditioning.    26 
 The equation for natural gas consumption also offers behaviorally intuitive interpretation.  27 
Out-of-home time allocation for non-mandatory activities has a positive impact on natural gas 28 
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consumption for larger households, similar to the finding for electricity consumption. The same 1 

pattern is seen for travel time as well.  As household income increases, so does natural gas 2 
consumption, presumably due to higher levels of consumption of goods and services in high-3 
income households (Davis and Muehlegger, 2010).  Natural gas consumption also increases with 4 

number of adults in the household. Interestingly, it is found that homes in urban areas consume 5 
more natural gas as do homes in mountain regions. This may be reflective of the energy mix in 6 
homes located in these spatial contexts. As the number of bedrooms increases, energy consumption 7 
increases. Households in mix-humid condition tend to consume less natural gas, presumably 8 
because natural gas is often used for heating; and in mix-humid conditions, households may need 9 

more cooling that uses electricity rather than natural gas.    10 
 At the end of the four steps in the model development and estimation phase, an integrated 11 
model of transport and residential energy consumption that can be applied to a population of agents 12 
(households) is obtained (Figure 1, Step 5). The suite of models that comprise the integrated 13 

transport and residential energy analysis tool constitute the following:  14 
a) MDCEV model of household vehicle fleet composition and utilization (mileage) 15 

b) MDCEV model of household daily activity time allocation  16 
c) Transport energy computation model utilizing energy intensity tables that provide 17 

conversion factors (EPA, 2018) to translate miles of household travel by various vehicle 18 
types to equivalent energy consumption 19 

d) Residential energy consumption model (SUR model) of electricity and natural gas 20 

consumption 21 
It should be noted that both NHTS and RECS are national data sets, and hence caution should be 22 

exercised when applying models estimated on large regional samples to individual jurisdictions 23 
(e.g., cities or counties). Unfortunately, the RECS data set is not quite large enough to support very 24 
localized model estimation efforts. Hence, in this study, the entire sample from the western region 25 

was used for model development purposes. Given this geographic scope of the model estimation 26 

data set, it may be reasonable to apply the model to jurisdictions that fall squarely within the region.  27 
For illustrative purposes, the model was applied to the Greater Phoenix area in Arizona; this case 28 
study is described next.  29 

 30 

5. ILLUSTRATIVE CASE STUDY  31 
The case study involved applying the model system to a synthetic population generated for 32 
Maricopa County (Greater Phoenix area) in Arizona, and computing and mapping the energy 33 

footprint per household across the census tracts in the region. Synthetic population generation and 34 
energy computations may be done at any geographic resolution; the census tract is used here for 35 
illustrative purposes and convenience.  36 
 The case study region of Maricopa County, AZ, includes 916 census tracts and 37 

encompasses a population of 4,155,501 persons residing in 1,489,533 households in 2017. A 38 
synthetic population was generated for the region using a software package called PopGen 39 
(Konduri et al, 2016). PopGen creates a synthetic population for a region by weighting and 40 

expanding a sample data set such that the weighted sample is representative of the true population 41 
with respect to marginal distributions on a number of control variables of interest such as 42 
household size, household income, number of workers, number of children, person age, person 43 
gender, and person employment status. The marginal control distributions representing true 44 
population characteristics are typically obtained from the census or regional agency databases. The 45 
American Community Survey (ACS) Public Use Microdata Sample (PUMS) data serves as the 46 
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seed sample which will be weighted and expanded to a full synthetic population that matches the 1 

marginal control distributions. For each census tract, the sample is weighted to match marginal 2 
control distributions on variables of interest, and then households are drawn according to weight-3 
based probabilities to create a synthetic population that matches true population numbers. More 4 

details about PopGen algorithms can be found in Konduri et al (2016). Synthetic populations for 5 
all census tracts are combined to form the county-wide synthetic population of households and 6 
persons. As the sample records drawn into the synthetic population are derived from PUMS, the 7 
records are rich with information necessary to apply a model of the nature described in this paper.   8 
 The entire suite of models (Figure 1, Step 1-4) described in the previous section is applied 9 

to the synthetic population. First, the MDCEV model of vehicle fleet composition and utilization 10 
is applied; this provides the vehicle fleet mix and mileage for each household. Second, the 11 
MDCEV model of activity time allocation is applied; this provides the time spent by each 12 
household (as a whole) in various activity categories including in-home, out-of-home mandatory 13 

activities, out-of-home non-mandatory activities, and travel time. Note that the application of the 14 
MDCEV models requires that they be exercised in forecasting mode; the procedures described in 15 

Pinjari and Bhat (2011) are used to accomplish this. By the end of this step, each synthetic 16 
population household is appended with vehicle fleet composition and utilization as well as activity-17 

time allocation information. Then, the energy intensity conversion factors are used to compute the 18 
transport energy consumption for each household. Finally, the SUR model of residential energy 19 
consumption is applied to compute residential electricity and natural gas consumption as a function 20 

of various factors, while accounting for the relationship between residential energy consumption 21 
and activity time allocation.   22 

After the residential and transport energy footprints are computed for each household in 23 
the synthetic population, summaries are derived and aggregate measures of energy consumption 24 
are calculated at the census tract level. Figure 2 shows the spatial distribution of energy 25 

consumption per household for census tracts in the Maricopa County, AZ, region. The first picture 26 

depicts transport energy consumption, the second graphic depicts residential energy consumption 27 
(sum of electricity and natural gas consumption), and the third graphic displays total energy 28 
footprint obtained by adding up the residential and transport energy consumptions. The thematic 29 

maps reveal that total energy consumption is higher in more affluent, lower density outlying cities 30 
and towns.  In general, a clear pattern can be seen across all three figures. Census tracts in the 31 

middle (urban core areas) are greener, while census tracts in outlying suburban areas and towns 32 
are more red (signifying a higher level of energy consumption per household).  This pattern may 33 

emerge because of a number of reasons; households in outlying suburban areas are likely to be 34 
more affluent and residing in larger homes, have larger households, have higher vehicle ownership, 35 
and need to drive to reach destinations.  Census tracts can be categorized into one of four groups, 36 
depending on where they fall – on average – compared to the overall region wide average energy 37 

footprint per household:  38 

 HH: Both residential and transportation energy consumption per household are above the 39 
regional averages 40 

 HL: Higher residential energy consumption and Lower transport energy consumption 41 

 LH: Lower residential energy consumption and Higher transport energy consumption 42 

 LL: Lower residential energy consumption and Lower transport energy consumption 43 
   44 
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Figure 2. Visualization of Energy Consumption Distribution for Maricopa County, Arizona 4 
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The average annual energy footprints were computed to be 59,405,158 BTU of residential energy 1 

consumption and 119,604,797 BTU of transport energy consumption (per household). These 2 
numbers are generally consistent with expectations and match real-world energy consumption 3 
estimates (EIA, 2017). 4 

Figure 3 shows a comparison between the HH and LL household segments.  It can be seen 5 
that there are very clear differences between households that are high consumers of residential and 6 
transport energy and households that are low consumers of energy. Because the distributions of 7 
energy consumption are skewed, the size of each segment varies. While 17 percent of households 8 
fall into the HH segment, 40 percent of households fall into the LL segment.  This is consistent 9 

with expectations as the average is likely to be impacted by outliers in the energy consumption 10 
spectrum.  The comparison between the HH and LL segments shows a number of patterns that are 11 
very consistent with expectations, suggesting that the integrated model developed in this effort 12 
offers intuitively reasonable estimates of household energy footprint.     13 

 Households that are energy guzzlers have substantially higher incomes levels than 14 
households in the LL category. In fact, of the households in the HH category, nearly one-half 15 

belong to the high-income group. While 88 percent of households in the HH category own their 16 
homes, only 46 percent of households in the LL category do so. Among households in the HH 17 

category, 95 percent reside in detached housing units; the corresponding percent for households in 18 
the LL category is just 45 percent. Households in the LL category show substantially smaller 19 
household sizes, with about 40 percent of the households in this segment having only one person. 20 

Overall, it can be seen that household structure, composition, and income significantly impact 21 
household energy consumption patterns.   22 

  23 

 24 

Figure 3. Comparison of Household Profiles Based on their Energy Consumption Bin 25 
 26 
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 In the interest of brevity, the graph comparing HL and LH households is not shown in this 1 

paper. However, some interesting differences are seen between these two groups of households. 2 
The HL segment (high residential and low transport energy consumption) comprises 26 percent of 3 
the population, while the LH segment comprises 17 percent of the households in the region. In 4 

general, households that have higher transport energy consumption tend to be larger and more 5 
affluent, which is to be expected given their higher activity levels. 6 

To further illustrate the efficacy of the modeling tool presented in this paper, two census 7 
tracts that have different energy consumption profiles were compared. The two census tracts that 8 
were compared are highlighted in the third panel of Figure 2. One census tract has a low per-9 

household energy consumption (L) while the other has a large per-household energy consumption 10 
(H). What makes households in one census tract to be higher energy consuming entities than 11 
households in another census tract?  Households in the respective census tract were compared with 12 
respect to their attributes and the results are shown in Figure 4. Both census tracts have about an 13 

equal number of households. The census tract with high-energy consumption (H) has 1,476 14 
households while the census tract with low total energy consumption (L) has 1,033 households.  15 

In other words, the number of households in the census tracts is not necessarily affecting the energy 16 
consumption per household. Rather, it is the attributes of the households that contribute to the 17 

differences. 18 
 19 

 20 

Figure 4. Comparison of Two Zones with Different Energy Consumption Profiles 21 
 22 

 As expected, a larger proportion of households in the high-energy consumption zone are 23 
owned (than in the lower energy consumption zone). The disparity in income distribution is 24 
extremely telling. While 64 percent of households in the low-energy consumption zone are low 25 
income, only 2 percent of households in the high-energy consumption zone fall into this income 26 
category. Similarly, high-energy consumption zone has a higher percent of detached single-family 27 
dwelling units than the low-energy consumption zone. The low-energy consumption zone has 26 28 
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percent single-person households while the high-energy consumption zone has only nine percent 1 

in this household size category. 2 
 It is clear that socio-economic and demographic characteristics as well as housing unit 3 
attributes significantly impact energy consumption patterns of households.  In addition, built 4 

environment attributes, mix and density of land uses, and availability of multiple modes of 5 
transportation are likely to impact energy consumption footprints. The spatial patterns seen in 6 
Figure 2 suggest that density and access may be playing an important role in shaping energy 7 
consumption footprints as well.  It would be valuable to determine the relative contributions of 8 
socio-economic/demographic factors on the one hand and built environment and multimodal 9 

access factors on the other hand, to the household energy footprint.  By doing so, it would be 10 
possible to devise land use, housing, and transportation policy interventions that reduce the energy 11 
footprint and advance sustainable development patterns.  12 
 13 

6. CONCLUSIONS 14 
This paper presents an integrated transport and residential energy analysis tool that is capable of 15 

quantifying the transport energy consumption and residential energy consumption of an individual 16 
household. The motivation to build such a tool stems from the possible inter-relationships that may 17 

exist between these two energy consumption footprints. A household that travels more and spends 18 
more time outside the home is likely to have a high transport energy footprint but may have a 19 
lower residential energy footprint and vice versa. Only operational energy consumption is 20 

considered within the scope of the tool presented in this paper; energy consumed during travel is 21 
transport energy consumption and electricity and natural gas consumed at home constitute the 22 

residential energy consumption footprint.  23 
 In order to facilitate an integrated approach to residential and transport energy consumption 24 
analysis, detailed activity-travel and vehicle fleet composition and utilization information is 25 

modeled using the National Household Travel Survey (NHTS) data set and then applied to the 26 

Residential Energy Consumption Survey (RECS) data set to impute transportation related 27 
variables in the RECS data set. The enhanced RECS data set is then used to estimate regression 28 
equations of electricity and natural gas consumption that incorporate transport and activity time 29 

allocation related variables as explanatory factors. In general, it is found that household activity-30 
time allocation patterns affect residential energy consumption, albeit differently for households of 31 

different sizes.  While single-person households depict a clear trade-off between residential and 32 
transport energy consumption, larger households depict a more complementary (mutually 33 

reinforcing) relationship – suggesting that integrated models of household and transport energy 34 
consumption need to recognize heterogeneity in the nature of the relationships between them 35 
across the population of households in a region.  In general, households that travel more are likely 36 
to have active lifestyles that also contribute to higher levels of residential energy consumption.   37 

 The integrated model system is applied to a synthetic population for the Greater Phoenix 38 
area in Arizona to demonstrate the efficacy of the model. The entire model stream is applied to the 39 
synthetic population to estimate transportation and residential energy consumption footprints for 40 

all households in the region. These computations facilitated the identification and comparison of 41 
different energy consumption market segments and the findings are very intuitive with larger 42 
households, higher income households, households in detached single-family units, and 43 
households owning their home exhibiting higher levels of energy consumption. Households in 44 
outlying suburban areas depicted higher energy footprints, suggesting that the built environment 45 
may be playing some role in shaping energy consumption patterns. The tool presented in this paper 46 
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can be used to analyze the energy footprint implications of alternative urban designs and modal 1 

investments.    2 
 3 
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